
NAND Flash Memories Application Note

Programming NAND Flash Memories

using ELNEC Device Programmers

Application Note

November 2018
an_programming_nand_flash_using_elnec_programmers, version 0.3

Version 0.3/11.2018 Page 1 of 80

NAND Flash Memories Application Note

Please, read carefully:

This application note describes how to program nand flash devices using ELNEC universal device

programmers. Before reading this document, user should be familiarized with nand flash devices. There are

plentiful sources available through the web containing detailed informations about nand flash internal organization,

errors in nand flash, basic algorithms, etc. Study, please, your device datasheet thoroughly, at least.

This application note is provided by our technical support department to help our customers and

is provided “as-is”, without warranty of any kind, either expressed or implied. We reserve the rights to

make changes to the information available in this application note at any time and assume no liability for

applications assistance, customer product design and any damages arising from the use of this

application note.

Version 0.3/11.2018 Page 2 of 80

NAND Flash Memories Application Note

CONTENT
Brief comments on invalid blocks... 5
Brief comments on bit errors.. 6
Two factors that programmer relies on..7
Data organization in pg4uw control software buffer...8
Loading data into pg4uw control software buffer...9

Loading multiple data images...10
Access Method window.. 11
Invalid blocks management...12

Treat all blocks.. 12
Skip IB.. 13
Skip IB with map in 0th block... 15
Skip IB with excess abandon..15
RBA (Reserved Block Area).. 16
Check IB without access... 19
Check IB with Skip IB... 19
Discard Invalid block(s) data... 20
Multiple partitions with Skip IB..20

Partition definition file... 22
Qualcomm Multiply partition format (*.mbn)..22
Comma separated values (*.csv)..23
Group define format (*.def)...25
Loading partition table definition file...26

Access Method window options validity in partitioning mode...28
Safe working procedure...29

Linux MTD compatible..29
Spare area usage.. 30

Do not use.. 30
User data.. 30
User data with IB info forced...31
ECC – Hamming (by Samsung)..31
ECC – Hamming (2 x 256 byte frame) variant 1 and 2...32

Device internal ECC controller...36
Enable device internal ECC controller..36

User Area... 37
User Area – Start Block.. 37
User Area – Number of Blocks..37
User Area – Last Block... 38
User Area – Max. Allowed Number of Invalid Blocks..38

Required valid blocks area... 40
Check required valid blocks area..40
Required valid blocks area – start block...40
Required valid blocks area – number of blocks..41

Max. allowed number of invalid blocks in device...42
Check Max. allowed number of blocks in device..42
Max. allowed number of blocks in device...43

Behaviour on new invalid block..44
If new invalid block is developed...44

Reserved block area options... 45
RBA Table – Start Block..45
RBA Table – Number of Blocks...45
RBA Table should be located..46

Invalid blocks indication options (simplified)..47
Invalid Block Indication Byte Value...47

Invalid blocks indication options (extended)...48
Use customized invalid blocks indication scheme..49
Alternative block validity indication byte value for invalid block..50
Alternative block validity indication byte value for good block...50
Block validity indication byte offset on a page...50

Version 0.3/11.2018 Page 3 of 80

NAND Flash Memories Application Note

Pages for block validity indication...51
Fill invalid block with predefined value..51
Invalid block filling value...51

Tolerant verification options...52
Use Tolerant verify feature.. 52
ECC frame size (bytes)...53
Acceptable number of errors..53

Block protection settings.. 54
List of blocks to set Program protection for...54
List of Blocks to set Erase protection for...54

One Time Protect area... 55
Process One Time Protect area..55
List of pages that should be protected..55
One Time ProteCt area default mode...56

Linux MTD compatible options... 57
Write BBT to device.. 58
BBT should be placed... 58
BBT should be placed starting from..58
Number of blocks reserved for BBT..59
PAGE numbers where BBT should be placed..59
Page numbers where Mirror BBT should be placed...59
BBT should be stored... 60
Store BBT version counter..60
BBT version counter Value... 60
Number of bits used per block in BBT on device..61
Value used for RESERVED blocks marking...61
Use Smart Media bytes order for ECC...61
Apply MTD specific ECC on partition data..62

OTP area options... 63
Include OTP area into operations...63
Protect OTP Area after programming...63

Device Operation options window..64
Insertion test and/or ID check.. 65

Insertion test... 65
Device ID check error terminates the operation..65

Command execution.. 66
Erase before programming... 66
Blank check before programming...66
Verify after reading.. 67
Verify after programming..67

Special device operation options...68
Target device uses.. 68

Special NAND flash commands... 69
Read ONFI parameter page... 70
Read JEDEC parameter page..73
Check invalid blocks... 76

Glossary... 77
History.. 80

Version 0.3/11.2018 Page 4 of 80

NAND Flash Memories Application Note

BRIEF COMMENTS ON INVALID BLOCKS

 Invalid block (in various sources may be referred also as “bad block” or “damaged block”) is a block that

contains one or more permanently damaged memory cells.

 Invalid block occurrence doesn't affect the function of other blocks in device.

 There may be invalid blocks yet in new (not used before) device. Other invalid blocks may develop over

time.

 Invalid block shouldn't be used for programming – data may be lost.

 Invalid block shouldn't be erased – information about its invalidity may be lost.

 There is BI byte somewhere in a block. Its location is specified by device manufacturer. For SLC devices, it

is typically in first spare area byte within first and/or second page in a block. For MLC devices, it is typically

in first spare area byte within first and/or last page in a block. But other locations are also used.

 Before any operation with device, all blocks must be screened for BI bytes values. This process is so-called

Invalid block map building. Typical flowchart:

 There are software techniques generally called invalid blocks management used for treatment of existing

invalid blocks. These techniques are relevant to know before pre-programming nand flash device.

 There are software techniques generally called wear levelling management used for new invalid blocks

development prevention. These techniques are used during end-appliance usage and, usually, are not

relevant to know before pre-programming nand flash device.

Version 0.3/11.2018 Page 5 of 80

Figure 1 : Invalid Block Map building flowchart.

http://en.wikipedia.org/wiki/Flash_memory#Memory_wear
http://en.wikipedia.org/wiki/Flash_memory#Memory_wear
http://en.wikipedia.org/wiki/Flash_memory#Memory_wear

NAND Flash Memories Application Note

BRIEF COMMENTS ON BIT ERRORS

 Bit errors are temporary errors. Typically, they appear on read only, and disappear after erase. Otherwise,

respective block must be considered invalid.

 Bit errors are native to nand flash memories. They can be considered to be a drawback of nand flash

technology. Typically, they occur due to an influence between adjacent memory cells. Please, refer to

general nand flash materials for more details on this topic.

 Bit errors may be detected and recovered. Various ECC algorithms are used for this purpose. Typical

representatives are Hamming algorithm, BCH (Bose – Chaudhuri – Hocquenghem) algorithm, and RS

(Reed – Solomon) algorithm.

 Individual ECC algorithms may be distinguished using several basic characteristics: the frame size

(a number of bytes/words covered by single application of the algorithm), the strength (a number of bit

errors that can be recovered in the frame of specified size) and the number of control bits/bytes (a size of

overhead data).

 For each nand flash device, the manufacturer specifies required minimum ECC parameters (e. g. 4 bit

errors recovery in 512 bytes frame). At least, an ECC algorithm capable to recover specified number of bit

errors over specified frame size must be used.

 Our programmers can support selected ECC algorithms. In addition, we offer customized implementations

that may support any ECC algorithm specified by customer. Also, a generalized solution is available – on

verify, the programmer may accept specified number of bit errors in specified number of bytes and

suppose, that these bit errors will be corrected by ECC algorithm in real application – see chapter Tolerant

verification options.

Version 0.3/11.2018 Page 6 of 80

http://en.wikipedia.org/wiki/Reed-Solomon_error_correction
http://en.wikipedia.org/wiki/BCH_code
http://en.wikipedia.org/wiki/Hamming_code
http://en.wikipedia.org/wiki/Flash_memory#Read_disturb

NAND Flash Memories Application Note

TWO FACTORS THAT PROGRAMMER RELIES ON

 The user: Programmer will do only what user has ordered to do. Programmer can detect device boundary

exceeding, but cannot foretell e. g. a block from where data should start. Please, don't rely on default

settings. Those are just some general preferences originating from device parameters and algorithm

simplifying rather than from your particular needs.

 NAND device internal controller: The controller communicates with programmer via STATUS register. On

erase, the controller checks if all memory cells in a block are in erased state. If controller says that the

block is erased properly, programmer will rely on this information – none (significant time consuming) blank

check is performed after erase. If controller says that the block is not erased properly, programmer will

consider that block invalid – the block is treated regarding to selected invalid block management. On

programming, the controller checks if all page locations expected to be in 0 are really in 0. If controller says

that the page is programmed properly, programmer will continue with next page. If controller says that the

page is not programmed properly, programmer will consider related block invalid – the block is treated

regarding to selected invalid block management.

Version 0.3/11.2018 Page 7 of 80

NAND Flash Memories Application Note

DATA ORGANIZATION IN PG4UW CONTROL SOFTWARE BUFFER

Data are stored in buffer as a continuous sequence of pages. Please, be aware of fact, that page spare

area is not included in normal device addressing. Control software buffer, however, uses linear addressing. This

may lead to hazardous misunderstandings resulting in incorrect data positioning in device. Compare, please,

following pictures:

Considering a common nand flash device with 2048+64 bytes in a page and 64 pages in a block, the first

byte of second block in device will be addressed using offset 0x20000 in device, but using offset 0x21000 in buffer.

It is crucial to keep this in mind, especially if working with partitions.

Version 0.3/11.2018 Page 8 of 80

Figure 2 : Buffer data layout, if spare area is not used.

Figure 3 : Buffer data layout, if spare area is used.

NAND Flash Memories Application Note

LOADING DATA INTO PG4UW CONTROL SOFTWARE BUFFER

Primarily, command File >> Load (short-cut <F3>) should be used for input image loading into buffer.

Software can recognize plentiful data formats, however, for devices with capacity of 16 Gbit and more only raw

binary mode (*.BIN) may be supported.

Data image file should correspond with a copy of NAND flash device without any invalid blocks.

Depending on other settings, it must or must not contain also spare area data. If selected mode requires spare area

data and your image doesn't contain it (relevant mainly for partitioning techniques), you can add blank (all 0xFF)

spare area automatically on image load allowing Add blank spare area option (see Figure 4, Additional operation

panel). It is important to select correct device firstly, since various devices may use different data area and spare

area sizes and control software always matches page layout of actually selected device. All other options available

in Load File window work in their usual way.

Version 0.3/11.2018 Page 9 of 80

Figure 4 : Load file dialog window.

NAND Flash Memories Application Note

LOADING MULTIPLE DATA IMAGES

If you need to load multiple data image files for single device (relevant mainly for partitioning techniques),

you may need to employ Positive offset option (see Figure 4, Buffer offset for loading panel). You may compute

the offset using following formula:

positive_offset = target_block_number_in_buffer x number_of_pages_in_block x page_size

where:

target_block_number_in_buffer is the number of target block as is mapped in buffer. Blocks ordering in

buffer may differ from their real ordering in device, see buffer to device mapping in chapter dedicated to respective

invalid blocks management technique.

number_of_pages_in_block is the count of pages in one block, as is given in your nand device

datasheet.

page_size is the size of a page in bytes or words (for x8 or x16 devices, respectively), as is given in your

nand device datasheet. The page size must, or must not include spare area size, depending on other settings.

This way you may load all your data images, file after file, and place them at correct locations in buffer.

Version 0.3/11.2018 Page 10 of 80

NAND Flash Memories Application Note

ACCESS METHOD WINDOW

Version 0.3/11.2018 Page 11 of 80

NAND Flash Memories Application Note

INVALID BLOCKS MANAGEMENT

Our programmers support several general invalid blocks management techniques. Not all methods

described here are supported on all programmers. Any other invalid blocks management technique can be

supported upon user's request.

TREAT ALL BLOCKS

In past, we called this technique “Do not Use”, simply because none block validity related decision

algorithm is used. All blocks in device are processed equally, not regarding their real validity status.

The technique may be very helpful if dumping of unknown data is necessary, e. g. for data recovery from

broken USB stick. It allows to create the image comprising all blocks in device for further analysis.

Proceed with caution!

Since this technique doesn't differentiate between valid and invalid blocks, you can suffer a damage!

On programming, programmer will try to write data also to invalid blocks. The operation will fail on verify

after programming (if enabled), however, if device is even thought used in end appliance, it may cause its

malfunction.

On erase, programmer will try to erase also invalid blocks. This may damage BI bytes in invalid blocks,

so information about their invalidity might be lost. Programmer is rather simple device not capable to perform any

reliability tests similar to those one on manufacturing line, so it cannot recover this information.

Version 0.3/11.2018 Page 12 of 80

Figure 5 : Invalid blocks management options.

NAND Flash Memories Application Note

Using Treat All Blocks technique, a number of blocks specified in option User Area – Number of

Blocks will be taken counting from buffer start, and programmed into device starting from a block specified in

option User Area – Start Block. The blocks will be programmed in device, not regarding theirs validity. If target

block is invalid, data will be lost. The number of blocks specified for processing is not necessary equal to the size of

data loaded in buffer.

On device read, reciprocally, a number of blocks specified in option User Area – Number of Blocks will

be read from device starting from a block specified in option User Area – Start Block, not taking source blocks

validity into account, and stored into buffer counting from buffer start.

SKIP IB

This is the simplest technique used for treatment of invalid blocks. If target block is invalid, it is skipped

and next valid block is used instead. The next data are then programmed into (next+1) th block. This will produce a

shift in data offset. The shift increases with each skipped invalid block. If there are too many invalid blocks in target

device area, not all data might be programmed. The overflow data would be lost, therefore operation is halted at

first moment when such condition is recognized (typically on initial Invalid Blocks Map building).

Version 0.3/11.2018 Page 13 of 80

Figure 6 : Treat All Blocks technique graphic representation.

NAND Flash Memories Application Note

Using Skip IB technique, a number of blocks specified in option User Area – Number of Blocks will be

taken counting from buffer start, and programmed into device starting from a block specified in option User Area –

Start Block. If target block is invalid, actual data will be programmed into next valid block, thus shifting all next data

by offset of one block. The number of blocks specified for processing is not necessary equal to the size of data

loaded in buffer. If a block specified in option User Area – Last Block is reached and not all specified blocks are

programmed, operation is halted with error.

On device read, reciprocally, a number of blocks specified in option User Area – Number of Blocks will

be read from device starting from a block specified in option User Area – Start Block. Read data will be stored into

buffer counting from buffer start. If source block is invalid, it will be skipped (not processed) and programmer will

continue with next valid block. Data are stored in buffer continually, without gaps from invalid blocks, so the same

image will be created in buffer not regarding invalid blocks distribution over the device. If a block specified in option

User Area – Last Block is reached and not all specified blocks are read, operation will close with error.

Version 0.3/11.2018 Page 14 of 80

Figure 7 : Skip IB technique graphic representation.

NAND Flash Memories Application Note

SKIP IB WITH MAP IN 0TH BLOCK

This technique is for backward compatibility with algorithms developed for old nand flash devices.

Very first nand flash memories came without spare area, so it was not possible to store BI byte nor any

other validity mark out of payload data. Initial invalid blocks were forced to all zeros state. But after first device

programming, it was not possible to distinguish, whether the block is invalid or programmed with all zeros

intentionally (e. g. some variables initialization section). One of used solutions consisted in programming Invalid

Blocks Map in first device block (block #0000). All other behaviour is the same as for Skip IB technique.

The map uses one bit value to store information about one block. Bit 0 of Byte 0 corresponds to block

#0000, bit 1 of Byte 0 corresponds to block #0001, …, bit 0 of Byte 1 corresponds to block #0008, and so on until

the device end. If bit value = 1 then corresponding block is invalid.

You can display the same Invalid Blocks Map using menu command Buffer / View/Edit Buffer (short-cut

<F4>) and then clicking on Invalid Blocks Map tab.

SKIP IB WITH EXCESS ABANDON

Note: This invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers.

This technique is very close to basic Skip IB technique, too. Recall, please, a possible data loss due to

excessive invalid blocks count in specified area. Skip IB with excess abandon technique doesn't generate error if

this lossy condition happen. Data that cannot be programmed will be simply abandoned (lost).

This technique may be useful for applications where multiple data copies are used as a mean of error

protection. Typical example is a bootloader storage. Another task where this techique may be useful is

programming of various files system related headers into unused (padding) blocks. It can process all valid blocks

and will not finish with error due to invalid blocks occurrence.

Compared to Treat all blocks technique, Skip IB with excess abandon skips invalid blocks, so

programmer doesn't expect any data there and verify operation can still succeed.

Version 0.3/11.2018 Page 15 of 80

NAND Flash Memories Application Note

RBA (RESERVED BLOCK AREA)

This is an another kind of invalid blocks management technique, based on replacement of invalid blocks.

Using this approach, the device is subdivided into three regions – user data area, reservoir of blocks for

replacement of invalid blocks from user data area, and an area reserved for redirection table (sometimes referred

also as table of substitutions). Normally, data are programmed into user data area. If target block is invalid, next

free valid block from reservoir is used instead. Redirection table is updated by new invalid-valid pair of blocks.

Process then continues with next block data and next block in user data area. After programming all required

blocks, redirection table is programmed into the area reserved for this purpose. In addition to information about

redirected block pairs, the table may also contain other kinds of data, like some identification header, version

numbering, device parameters information, etc.

Reserved block area technique, as is implemented in our programmers, is based on Samsung's

algorithm and works as is described in following paragraphs. You can exactly specify two areas of three in use –

user area, where data should be stored primarily; and RBA Table area, where redirection table should be stored.

Reservoir is created automatically, based on setting of option RBA Table should be located, see Figure 8.

Version 0.3/11.2018 Page 16 of 80

Figure 8 : Device layout depending of RBA Table should be located option
value: before Block Reservoir (a) and after Block reservoir (b). There may

be unused blocks accepted in grey areas.

NAND Flash Memories Application Note

Figure 9 illustrates buffer data to physical blocks assignment on example where RBA Table should be

located after reservoir. In the other case, the principle of blocks substitution will be the same, just areas allocation

will differ, see 8.

On programming:

A number of blocks specified in option User Area – Number of Blocks will be allocated for user data

area, starting from block specified in option User Area – Start Block. Another number of blocks specified in option

RBA Table – Number of Blocks will be allocated for redirection table, starting from block specified in option RBA

Table – Start Block. If RBA Table should be located = before Block Reservoir, all free blocks between

redirection table area and device end will be allocated for block reservoir. If RBA Table should be located = after

Block Reservoir, all free blocks between user data area and redirection table area will be allocated for block

reservoir.

A number of blocks specified in option User Area – Number of Blocks will be taken counting from buffer

start and programmed into user data area in device, block by block. If target block is invalid, next free valid block

from block reservoir will be used instead. Blocks are picked-up from block reservoir in ascending order (from device

start towards device end), invalid blocks are not used. Redirection table in programmer memory will be updated. If

there are more invalid blocks in user data area than valid blocks in block reservoir, data loss will occur. In such

case, operation will be halted with error.

Version 0.3/11.2018 Page 17 of 80

Figure 9 : RBA technique graphic representation.

NAND Flash Memories Application Note

After programming specified number of data blocks, two copies (original and back-up) of redirection table

(RBA Table) will be programmed into redirection table area. Skip IB technique is used. If there are less than two

valid blocks in redirection table area, those two copies cannot be programmed and operation will be halted with

error.

On read:

A number of blocks specified in option User Area – Number of Blocks will be allocated for user data

area, starting from block specified in option User Area – Start Block. Another number of blocks specified in option

RBA Table – Number of Blocks will be allocated for redirection table, starting from block specified in option RBA

Table – Start Block. If RBA Table should be located = before Block Reservoir, all free blocks between

redirection table area and device end will be allocated for block reservoir. If RBA Table should be located = after

Block Reservoir, all free blocks between user data area and redirection table area will be allocated for block

reservoir.

Redirection table area will be searched for at least one valid copy of redirection table. If valid redirection

table is not found, operation is halted with error.

After successful RBA Table decoding, a number of blocks specified in option User Area – Number of

Blocks will be read from user data area and stored into buffer counting from buffer start. If source block is listed in

redirection table, its substitutive block will be read instead. If it is not possible to read specified number of blocks

from user data area + block reservoir, operation will close with warning.

Redirection table format:

RBA Table consists of pages. Each page uses the same data field layout. Each data field is 16 bit wide,

stored using little endian format.

The first data field on a page is header. The header is always of the same value 0xFDFE.

The second data field on a page is count field. Count field stores page sequence number, counting from 1

for first page of first RBA Table copy and incrementing by one for each other page. For second RBA table copy, the

counter continues incrementing (if table uses e. g. 4 pages, count field value for first page of second RBA Table

copy will be 5).

Further, a page continues with invalid block – replacement block data field pairs. These pairs store

numbers of invalid blocks from user data area and theirs respective substitution blocks from blocks reservoir used

for replacement. Single page can hold information about (page_data_area_size – 4)/4 redirections.

Unused bytes in RBA Table block are set to blank state 0xFF.

Version 0.3/11.2018 Page 18 of 80

NAND Flash Memories Application Note

CHECK IB WITHOUT ACCESS

Note: This invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers.

Check IB without access technique performs checks with regard to set rules, but doesn't execute any

other access. For that reason, only programming command is available after confirming this technique. The

command is used for running the tests.

This technique may be used for programming simulation, e. g. if you are going to do initial nand flash

device programming after the end-appliance assembly. In such case you may be interested in not using devices

with too much invalid blocks for assembly (thus minimizing the waste due to memory units of poor quality).

An area starting from block specified in option User Area – Start Block up to block specified in option

User Area – Last Block is scanned for invalid blocks.

If the count of invalid blocks in that area exceeds a number specified in option User Area – Max. Allowed

Number of Invalid Blocks, an error is reported.

If the count of valid blocks in that area is less than a number specified in option User Area – Number of

Blocks, an error is reported.

If enabled, required valid blocks area is checked.

If enabled, maximum allowed number of invalid blocks in device is checked.

CHECK IB WITH SKIP IB

Note: This invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers.

After performing all tests in the same manner like if Check IB without access technique would be used,

Skip IB technique will be used for accessing the device.

This technique may be helpful if you need to guarantee some number of unused valid blocks in user data

area. E. g. if you need to program 80 blocks into area of 100 blocks, standard Skip IB technique will accept 20

invalid blocks in that area. But using Check IB with Skip IB technique, you may allow acceptance of only e. g. 10

invalid blocks. Remaining 10 valid blocks may be used for further invalid blocks replacement during end-appliance

lifetime.

Version 0.3/11.2018 Page 19 of 80

NAND Flash Memories Application Note

DISCARD INVALID BLOCK(S) DATA

Note: This invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers. It can be activated only for techniques based on partitioning, and only using *.CSV partition definition

file.

Discard invalid block(s) data is a hybrid of Treat all blocks and Skip IB techniques. If programmer

meets invalid block in device, it simply increases the pointer one block forward in both, device and buffer. Data

belonging to invalid block are discarded (ignored).

This technique is intended particularly for programming various bootloaders and data tables, when

multiple copies are used as a meaning error protection.

MULTIPLE PARTITIONS WITH SKIP IB

Note: This invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers. It offers wide range of options that were implemented in successive steps. If enabled for

discontinued programmers, it is called Qualcomm Multiple Partition (historical reason).

In very simple words, this is Skip IB technique extended for allowance of multiple user data areas. This

comes with variety of new possibilities, but also with more complicated configuration and handling.

User data area is now called partition. All user data area settings have respective partition equivalent:

 User Area – Start Block → Partition start

 User Area – Number of Blocks → Used partition size

 User Area – Last Block → Partition end

There are several significant differences from Skip IB technique:

 Spare area data are always expected in buffer. If you don't use spare area, you may fill respective

areas by blank data on input image file load by enabling Add blank spare area feature, see chapter

Loading data into pg4uw control software buffer.

 Partition start data in buffer are now expected with the same offset as in device, i. e. Partition

start value specifies the partition beginning in both, device and buffer.

Version 0.3/11.2018 Page 20 of 80

NAND Flash Memories Application Note

 Instead of specifying necessary options in Access Method window, partitions are specified via

Partition definition file.

 Only some of options available in Access Method window will be accepted during operation, see

chapter Access Method window options validity in partitioning mode.

 Probably, you will need to load several input data images, see chapter Loading multiple data

images.

Using Multiple Partition with Skip IB technique, programmer will process each partition individually, in

increasing order. After programming or reading a partition, the same partition is verified (if enabled). Only after then,

if succeeded, the programmer will continue with next partition.

A number of blocks specified by value of Used partition size will be taken from buffer counting from a

block specified by value of Partition start. These data will be programmed into device starting from a block

specified by value of Partition start, too. If target block is invalid, actual data will be programmed into next valid

block, thus shifting all next data by offset of one block. If a block specified by value of Partition end is reached and

not all specified blocks are programmed, operation is halted with error.

On device read, reciprocally, a number of blocks specified by value of Used partition size will be read

from device starting from a block specified value of Partition start. Read data will be stored into buffer counting

from a block specified by value of Partition start, too. If source block is invalid, it will be skipped (not processed)

and programmer will continue with next valid block. Data are stored in buffer continually, without gaps from invalid

blocks, so the same image will be created in buffer not regarding invalid blocks distribution over the partition. If a

block specified by value of Partition end is reached and not all specified blocks are read, operation will close with

warning.

Figure 10 shows an example device with three partitions.

Partition 0 was programmed successfully. Two unused blocks left at partition end (also referred as

padding blocks) are enough for compensation of one invalid block found in device.

Partition 1 couldn't be programmed successfully. There is only one unused block left for invalid blocks

compensation, but two invalid blocks were found in device. In consequence, one data block was lost.

Partition 2 is a special kind of unused partition. In fact, it may be used later, by end-appliance itself, but it

is not programmed on pre-assembly programming. It may be just specified but not used, simply for your better

orientation in more complicated partitioning scheme. Or, there may be other options specified for this partition,

providing some level of device quality check (e. g. devices with too many invalid blocks in this partition may be

rejected this way from further processing).

Version 0.3/11.2018 Page 21 of 80

NAND Flash Memories Application Note

PARTITION DEFINITION FILE

Partition definition file is used for instructing the programmer about how to allocate blocks for partitions,

and, eventually, what further pre- or post-processing apply on partition. There are several different formats

supported. Each partition definition file format will be described in further chapters.

QUALCOMM MULTIPLY PARTITION FORMAT (*.MBN)

Legal note:

Qualcomm Multiply Partition format was invented by Qualcomm Incorporated (USA), not by Elnec. The

owner of all potential legal rights is Qualcomm Incorporated (San Diego, USA).

Generally, our programmers support two versions of Qualcomm Multiply Partition format. They can be

simply distinguished by the number of input files.

Version 0.3/11.2018 Page 22 of 80

Figure 10 : Multiple partitions with Skip IB technique graphic representation.

NAND Flash Memories Application Note

Procedure for two input files

If you have two input files available, they are generally named FactoryImage.bin and PartitionTable.mbn.

PartitionTable.mbn is rather small (typically 256 bytes) and contains partition table definition. Load this

file using menu File >> Load Partition table, see chapter Loading partition table definition file. Actually, the

maximum count of supported partitions is 64 (maximum MBN files size of 1040 bytes).

FactoryImage.bin may be rather huge and contains binary data image. Load this file using standard

Load procedure, see chapter Loading data into pg4uw control software buffer.

It is possible to save data using this format. To save buffer content in binary format, use standard Save

procedure (menu File >> Save, shortcut <F2> or Save command from Main toolbar). To save partition table in

Qualcomm Multiply Partition compatible format, use menu File >> Save Partition table.

Procedure for single input file

If you have single input file available, it is generally named FactoryImage2.mbn. The file is rather huge

and contains both, partition table definition and binary data image, plus a header. The file can be simply identified

using hex-viewer – you must identify text “Image with header” at file start.

The header specifies also block validity indication byte position. This parameter is also accepted and

used for proper reading and/or verifying the device. The value overwrites manual settings in Invalid blocks

indication options section of Access Method window.

Load this file using standard Load procedure, see chapter Loading data into pg4uw control software

buffer.

It is not possible to save data using this format.

COMMA SEPARATED VALUES (*.CSV)

Partition table definition file uses well-known comma separated values file format.

The file should contain a number of rows corresponding to the number of partitions. Each row specifies

one partition.

Values in row should be separated by separator – comma (,) or semicolon (;) may be used. Space

characters (ASCII code 0x20) are ignored and shouldn't be used in place of values separator.

Each row should contain several values (both, decimal and/or hexadecimal values can be used):

 partition start (mandatory) – specifies the block in device where partition should start. Enter the

block number here.

 partition end (mandatory) – specifies the block in device where partition should end. Enter the

block number here.

Version 0.3/11.2018 Page 23 of 80

NAND Flash Memories Application Note

 used partition size (mandatory) – specifies the number of blocks really occupied by partition

data. Typically, there are some reserve blocks added for invalid blocks replacement, therefore obviously

partition_end – partition_start > used_partition_size. Enter number of blocks here.

 special options/reserved (optional/mandatory) – this value enables to specify some special

options. If you use it just due to comment option usage, enter the value of 0xFFFFFFFF (4 bytes size)

here to ensure future compatibility.

Special options format specification:

MSB (bit 31) LSB (bit 0)
xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx

bits 11:0 – Maximum allowed number of invalid blocks in partition:

0xFFF = feature disabled (default)

any other value specifies the number of invalid blocks that can be accepted in partition

bits 15:12 – Invalid blocks management technique:

0x0 = Treat all blocks

0x1 or 0xF = Skip IB (default)

0x2 = Skip IB with excess abandon

0x3 = Check IB without access

0x4 = Discard Invalid block(s) data

Note: It is possible to specify an equivalent of Check IB with Skip IB technique using Skip IB (0x1

or 0xF) technique and non 0xFFF value for Max. allowed number of invalid blocks in partition.

bits 22:16 – Reserved for future use, consider 0x7F value for future compatibility.

bit 23 – First block in partition must be good:

0 = if first block in respective partition is invalid, device is considered bad and operation is aborted

1 = feature disabled (default)

bits 27:24 – File system preparation:

0xFF = feature disabled (default)

0x00 = JFFS2 Clean Markers are written to unused blocks at respective partition end using MSB

byte ordering (big endian)

0x01 = JFFS2 Clean Markers are written to unused blocks at respective partition end using LSB

Version 0.3/11.2018 Page 24 of 80

NAND Flash Memories Application Note

byte ordering (little endian)

bits 31:28 – Reserved for future use, consider 0xF value for future compatibility.

Using values not specified here may cause partition table load error.

 comment (optional) – you can enter any text here. Primarily, this item is intended for your notes

that will help you to orientate in the file. It may contain e. g. partition name. If you use comments,

reserved option must be also specified.

Partition table definition file example:

 0; 100; 20; 0xff7fffff; boot
101; 200; 50; 0xff7fffff; exec
201; 300; 0; 0xff7f3010; res1
301; 400; 50; 0xff7fffff; fsys
401; 500; 0; 0xff7f3010; res2
501; 1000; 50; 0xffffffff; data

For loading the table, use menu File >> Load Partition table, see chapter Loading partition table

definition file.

It is possible to save your partition table definition using this format. To save partition table data, use

menu File >> Save Partition table. The table is saved using all values in row, a partition number is used for

comment.

GROUP DEFINE FORMAT (*.DEF)

Important note:

The support of this format was implemented based only on fragment of specification available from

customer. Therefore it cannot be considered full and reliable. We don't recommend to us it, unless you exactly

know what you are doing. If you observe any problems, please, contact our technical support with full Group

Define file format specification.

Partition table definition file consists of file header and group records. Each group record specifies one

partition.

Load this partition table definition file using menu File >> Load Partition table, see chapter Loading

partition table definition file.

It is possible to save your partition table definition file using this format. To save partition table data, use

menu File >> Save Partition table.

Version 0.3/11.2018 Page 25 of 80

NAND Flash Memories Application Note

LOADING PARTITION TABLE DEFINITION FILE

Use menu File >> Load Partition table to open Load Partition table window. Filter your folder content

using partition definition file type mask. Select your file and press button Open.

Your partition definition file is then opened, decoded, checked, listed in log window and stored in special

buffer (use menu Buffer >> View/Edit Buffer to display buffer window, then click on Partition Table tab).

Version 0.3/11.2018 Page 26 of 80

Figure 11: Load Partition table window.

NAND Flash Memories Application Note

Version 0.3/11.2018 Page 27 of 80

Figure 12: Successful partition table definition file load listing example
in log window (an example from CSV format description was used).

NAND Flash Memories Application Note

ACCESS METHOD WINDOW OPTIONS VALIDITY IN PARTITIONING MODE

Only some of options available in Access Method window are valid if invalid block management

technique based on partitioning is applied. These are:

 Required valid blocks area

 Max. allowed number of invalid blocks in device

 Invalid block indication options

 Tolerant verification options

Please, see respective chapters for detailed informations.

Some devices may involve special hardware features, such as internal ECC controller, some kind of

non-volatile blocks locking, etc. If target nand flash device is equipped with such feature, it's enabling and/or other

settings are also available in Access Method window. These special hardware features may be used also with

partitioning techniques.

Version 0.3/11.2018 Page 28 of 80

Figure 13: Example of partition table stored in buffer

NAND Flash Memories Application Note

SAFE WORKING PROCEDURE

1. Select Multiple partitions with Skip IB in Access Method window. It is very important to start

with this selection, since it triggers programmer and control software internal pre-settings. Only after then

it is safe to continue with next steps.

2. Prepare and load Partition definition file. In general, it does not matter what is loaded first –

partition definition file or input data image(s). But some customized implementations may pre-process

input images with respect to specifications in partition definition file, so it is safer to familiarize with

operation sequence as is listed here.

3. If necessary, set other options in Access Method window, of those accepted in partitioning mode,

see chapter Access Method window options validity in partitioning mode.

4. Load input data into buffer, see chapter Loading data into pg4uw control software buffer.

5. Save your settings into project file and test the operation.

LINUX MTD COMPATIBLE

Note: This invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers.

This technique further extends Multiple partitions with Skip IB technique with a special feature used by

MTD driver in Linux-based operating systems – Bad Blocks Table. All features and procedures mentioned in

previous chapters dedicated to Multiple partitions with Skip IB technique are valid without any change. The

difference is a new options group available in Access Method window and accepted only if this technique is in

use – Linux MTD compatible options. Study, please, respective chapters to get complete information on how to

use Linux MTD compatible technique.

Limitations:

Only Hamming ECC algorithm is supported by our programmers. The algorithm can recover 1 bit error in

256 byte frame. If manufacturer prescribes more powerful error protection for target nand flash device, Linux MTD

compatible technique is not allowed for that device.

If you need to use another ECC algorithm, contact, please, our technical support with your demand.

Version 0.3/11.2018 Page 29 of 80

NAND Flash Memories Application Note

SPARE AREA USAGE

Our programmers support several modes of spare area usage. Not all modes described here are

supported on all programmers. Any other spare area usage mode can be supported upon user's request.

DO NOT USE

Do not use mode is about what its name means – spare area is not used. Data for spare area are neither

expected in buffer (see 2 in chapter Loading data into pg4uw control software buffer) nor programmed in or read

from target device, respectively.

USER DATA

User data mode treats spare area as is, without any change. Spare area data are both, expected in

buffer (see 3 in chapter Loading data into pg4uw control software buffer) and programmed in or read from device,

respectively.

This is default spare area usage mode for partitioning techniques (Multiple partitions with Skip IB and

Linux MTD compatible).

Important note:

Using this mode may lead to block validity information loss if BI byte is rewritten with any data different

from 0xFF (or 0xFFFF for x16 devices). Use with care!

Version 0.3/11.2018 Page 30 of 80

Figure 14 : Spare area usage options.

NAND Flash Memories Application Note

USER DATA WITH IB INFO FORCED

This is an extension of User data mode. Data from buffer are modified during programming with aim to

keep block validity information – the value at BI byte position is forced to 0xFF (or 0xFFFF for x16 devices).

User can change BI byte position from default using Invalid blocks indication options (extended) and

related settings.

ECC – HAMMING (BY SAMSUNG)

This spare area usage mode is based on Hamming ECC algorithm, as was proposed by Samsung some

time ago. You can access original document also from our archive by clicking this link.

Using ECC Hamming (by Samsung) mode, spare area data are not expected in buffer. Programmer will

add spare data instead.

A page data area is segmented into 512 byte frames. Spare area is segmented into the same number of

frames. E. g. for typical 2048+64 byte page, data area will be segmented into 4 frames of 512 bytes, and spare

area into corresponding 4 frames of 16 bytes each, see example on 15.

For each frame in data area, ECC checksum is calculated using Hamming algorithm. This algorithm is

capable to detect up to 2 bit errors in a frame, and recover up to 1 bit error in a frame. The calculation produces

3 bytes of checksum. Calculated checksum is inserted into spare area, see 16 and 17 for layouts.

Version 0.3/11.2018 Page 31 of 80

Figure 15: ECC Hamming (by Samsung) page segmentation example.

http://www.elnec.com/sw/samsung_ecc_algorithm_for_512b.pdf

NAND Flash Memories Application Note

On programming, ECC checksum is calculated and inserted into page buffer. Reserved bytes/words are

kept blank. Checksums are programmed into device.

On verifying, ECC checksum is calculated from data in buffer and inserted into compare page buffer.

Device page is read as is and its spare area content is compared against calculated content in compare buffer.

On read, ECC checksum is calculated from read data and compared against checksum read from device.

Detected errors are repaired before storage in buffer, if possible.

ECC – HAMMING (2 X 256 BYTE FRAME) VARIANT 1 AND 2

Note: This feature is not supported on BeeProg+, BeeHive4+ and BeeHive8S programmers.

This spare area usage mode is based on Hamming ECC algorithm, as is used in Linux MTD subsystem.

It is the same spare area usage mode, as can be specified for Linux MTD compatible technique using Apply MTD

specific ECC on partition data switch.

Using ECC Hamming (2 x 256 byte frame) mode, spare area data are not expected in buffer.

Version 0.3/11.2018 Page 32 of 80

Figure 16 : ECC Hamming (by Samsung) spare area layout for small page (512+16 bytes).

Figure 17 : ECC Hamming (by Samsung) spare area layout for large page (2048+64 bytes).

NAND Flash Memories Application Note

Programmer will add spare data instead.

A page data area is segmented into 256 byte frames. Spare area is not segmented (compare to ECC –

Hamming (by Samsung) mode).

For each frame in data area, ECC checksum is calculated using Hamming algorithm. This algorithm is

capable to detect up to 2 bit errors in a frame, and recover up to 1 bit error in a frame. The calculation produces

3 bytes of checksum. Calculated checksum is inserted into spare area, see 1 to 3 for layouts.

ECC Hamming (2 x 256 byte frame) variant 1 to ECC Hamming (2 x 256 byte frame) variant 2

difference is as follows:

In both cases, three bytes of checksum are calculated per data frame – ECC[0], ECC[1], ECC[2].

Variant 1 stores them in order ECC[0], ECC[1], ECC[2]. This corresponds to default layout used in Linux MTD

driver. Variant 2 stores them in order ECC[1], ECC[0], ECC[2]. This corresponds to SmartMedia layout as can be

specified for Linux MTD compatible technique by Use Smart Media bytes order for ECC switch (or by

CONFIG_MTD_NAND_ECC_SMC switch in Linux MTD driver).

On programming, ECC checksum is calculated and inserted into page buffer. Reserved bytes/words are

kept blank. Checksums are programmed into device.

On verifying, ECC checksum is calculated from data in buffer and inserted into compare page buffer.

Device page is read as is and its spare area content is compared against calculated content in compare buffer.

On read, ECC checksum is calculated from read data and compared against checksum read from device.

Detected errors are repaired before storage in buffer, if possible.

Note: For Linux MTD compatible technique, there are always some data expected for spare area in buffer. These

may be user payload data or blank data only. Areas specified as “reserved” in following tables are not affected by

ECC Hamming (2 x 256 byte frame) spare area usage mode. Existing data in those areas are preserved.

Version 0.3/11.2018 Page 33 of 80

NAND Flash Memories Application Note

Version 0.3/11.2018 Page 34 of 80

Table 1 : ECC - Hamming (2 x 256 byte frame)

variant 1 spare area layout for 512 + 16 byte page (variant

2 differs in ECC[0] - ECC[1] ordering).

Offset Usage
0 Frame 0 – ECC[0]
1 Frame 0 – ECC[1]
2 Frame 0 – ECC[2]
3 Frame 1 – ECC[0]
4 Reserved
5 Reserved
6 Frame 1 – ECC[1]
7 Frame 1 – ECC[2]

8 ~15 Reserved

Table 2: ECC - Hamming (2 x 256 byte frame) variant 1
spare area layout for 2048 + 64 byte page (variant 2 differs

in ECC[0] - ECC[1] ordering).

Offset Usage
0 ~ 39 Reserved

40 Frame 0 – ECC[0]
41 Frame 0 – ECC[1]
42 Frame 0 – ECC[2]
43 Frame 1 – ECC[0]
44 Frame 1 – ECC[1]
45 Frame 1 – ECC[2]
46 Frame 2 – ECC[0]
47 Frame 2 – ECC[1]
48 Frame 2 – ECC[2]
49 Frame 3 – ECC[0]
50 Frame 3 – ECC[1]
51 Frame 3 – ECC[2]
52 Frame 4 – ECC[0]
53 Frame 4 – ECC[1]
54 Frame 4 – ECC[2]
55 Frame 5 – ECC[0]
56 Frame 5 – ECC[1]
57 Frame 5 – ECC[2]
58 Frame 6 – ECC[0]
59 Frame 6 – ECC[1]
60 Frame 6 – ECC[2]
61 Frame 7 – ECC[0]
62 Frame 7 – ECC[1]
63 Frame 7 – ECC[2]

NAND Flash Memories Application Note

Version 0.3/11.2018 Page 35 of 80

Table 3 : ECC - Hamming (2 x 256 byte frame) variant 1
spare area layout for 4096 + 128 byte page (variant 2

differs in ECC[0] - ECC[1] ordering).

Offset Usage
0 ~ 79 Reserved

80 Frame 0 – ECC[0]
81 Frame 0 – ECC[1]
82 Frame 0 – ECC[2]
83 Frame 1 – ECC[0]
84 Frame 1 – ECC[1]
85 Frame 1 – ECC[2]
86 Frame 2 – ECC[0]
87 Frame 2 – ECC[1]
88 Frame 2 – ECC[2]
89 Frame 3 – ECC[0]
90 Frame 3 – ECC[1]
91 Frame 3 – ECC[2]
92 Frame 4 – ECC[0]
93 Frame 4 – ECC[1]
94 Frame 4 – ECC[2]
95 Frame 5 – ECC[0]
96 Frame 5 – ECC[1]
97 Frame 5 – ECC[2]
98 Frame 6 – ECC[0]
99 Frame 6 – ECC[1]
100 Frame 6 – ECC[2]
101 Frame 7 – ECC[0]
102 Frame 7 – ECC[1]
103 Frame 7 – ECC[2]
104 Frame 8 – ECC[0]
105 Frame 8 – ECC[1]
106 Frame 8 – ECC[2]
107 Frame 9 – ECC[0]
108 Frame 9 – ECC[1]
109 Frame 9 – ECC[2]
110 Frame 10 – ECC[0]
111 Frame 10 – ECC[1]
112 Frame 10 – ECC[2]
113 Frame 11 – ECC[0]
114 Frame 11 – ECC[1]
115 Frame 11 – ECC[2]
116 Frame 12 – ECC[0]
117 Frame 12 – ECC[1]
118 Frame 12 – ECC[2]
119 Frame 13 – ECC[0]
120 Frame 13 – ECC[1]
121 Frame 13 – ECC[2]
122 Frame 14 – ECC[0]
123 Frame 14 – ECC[1]
124 Frame 14 – ECC[2]
125 Frame 15 – ECC[0]
126 Frame 15 – ECC[1]
127 Frame 15 – ECC[2]

NAND Flash Memories Application Note

DEVICE INTERNAL ECC CONTROLLER

Some modern nand flash devices incorporate built-in internal ECC controller. It is a special hardware logic

circuit capable to compute ECC checksums for programmed pages, as well as to detect and repair errors for read

pages. The option is displayed only for devices equipped with internal ECC controller.

Important note:

If internal ECC controller usage is enabled on target device, it may come to conflict with spare area data

in buffer. In such case, buffer data will be ignored (lost). Always check ECC checksums layout used by internal

ECC controller and avoid conflicts while working with target nand flash device equipped with built-in ECC

controller.

ENABLE DEVICE INTERNAL ECC CONTROLLER

Confirm the check-box to enable target device internal ECC controller.

Default setting: Disabled.

Version 0.3/11.2018 Page 36 of 80

Figure 18 : Target device internal ECC controller options.

NAND Flash Memories Application Note

USER AREA

There are several options available for specification of processed device area. In below form, they can be

used for non-partitioning invalid blocks techniques. See chapter Multiple partitions with Skip IB for their partitioning

equivalents.

USER AREA – START BLOCK

Option User area – start block specifies the ordinal number of physical block in target device where user

data area should start. If the block specified here is invalid, real user data area start may be shifted or redirected in

practice, depending on invalid blocks management technique in use.

Blank check and erase operation don't take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default setting: Block 0 (device start) or block 1 (only for Skip IB with map in 0th block technique).

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

USER AREA – NUMBER OF BLOCKS

Option User area – number of blocks specifies the count of valid physical blocks in target device that

should be accessed. If the count specified here cannot be accomplished due to excessive invalid blocks

Version 0.3/11.2018 Page 37 of 80

Figure 19 : User area options.

NAND Flash Memories Application Note

occurrence in device, operation may be aborted with error, depending on invalid blocks management technique in

use.

Blank check and erase operation don't take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default setting: 98% of all blocks in target device (typically, manufacturers guarantee less than 2% of invalid

blocks, mainly for SLC devices), or minimum valid blocks in device count specified in target device datasheet.

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

USER AREA – LAST BLOCK

Option User area – last block specifies the ordinal number of physical block in target device that

operation cannot get beyond. Device area beyond this block should not be accessed. If operation reaches the block

specified here and expected count of valid blocks was not processed yet, operation may be aborted with error,

depending on invalid blocks management technique in use.

Blank check and erase operation don't take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default setting: last physical block in device.

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

USER AREA – MAX. ALLOWED NUMBER OF INVALID BLOCKS

Note: This option is available for selected programmers and/or devices only.

Option User area – max. allowed number of invalid blocks specifies the maximum count of invalid

blocks that are allowed to occur between User area – start block and User area – last block. If the count

specified here is exceeded, operation will be aborted with error.

Version 0.3/11.2018 Page 38 of 80

NAND Flash Memories Application Note

Blank check and erase operation don't take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default setting: A difference from default User area – number of blocks to all blocks in target device.

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 39 of 80

NAND Flash Memories Application Note

REQUIRED VALID BLOCKS AREA

Required valid blocks area options may be used to specify a special area inside of user data area where

no one invalid block is allowed. A typical usage of reserved valid blocks area is to preserve uninterrupted

bootloader programming into target device first blocks.

Before an operation on target device starts, specified area is checked for invalid blocks presence. If there

is any invalid block found there, operation is aborted with error.

These options are accepted by all invalid blocks management techniques except for Treat all blocks.

Blank check and erase operation don't take required valid block area into account – they always process

all or all valid blocks in target device, depending on invalid blocks management technique in use.

CHECK REQUIRED VALID BLOCKS AREA

Confirm the check-box to enable required valid blocks area feature. If the check-box is not confirmed, the

settings of other related options are irrelevant.

Default setting: Disabled.

REQUIRED VALID BLOCKS AREA – START BLOCK

Option Required valid blocks area – start block specifies the ordinal number of physical block in target

device where required valid blocks area should start. Blocks before the one specified here will be not considered on

check.

Version 0.3/11.2018 Page 40 of 80

Figure 20 : Required valid blocks area options.

NAND Flash Memories Application Note

Default setting: block 0

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

REQUIRED VALID BLOCKS AREA – NUMBER OF BLOCKS

Option Required valid blocks area – number of blocks specifies the count of physical blocks in target

device that must be valid, counting from Required valid blocks area – start block.

Default setting: 1 block

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 41 of 80

NAND Flash Memories Application Note

MAX. ALLOWED NUMBER OF INVALID BLOCKS IN DEVICE

Note: This feature is not supported on BeeProg+, BeeHive4+ and BeeHive8S programmers.

The feature is useful, if you need to reject devices with too many invalid blocks from usage. If enabled,

the count of invalid blocks found in whole target device is evaluated and if preset threshold is exceeded, the device

is rejected from further usage. After that, other target device quality features are applied. For example, the

programmer may be instructed to reject device if (ordered by evaluation sequence):

 there are more than 20 invalid blocks in device globally – see Max. allowed number of of invalid

blocks in device – evaluated once, before operation start;

 there are more than 5 invalid blocks in used area – see User Area – Max. Allowed Number of

Invalid Blocks – evaluated continually, as new invalid blocks may be developed during programming and/

or erasing;

 there is any invalid block in first 10 used blocks – see Required valid blocks area – evaluated

continually, as new invalid blocks may be developed during programming and/or erasing.

CHECK MAX. ALLOWED NUMBER OF BLOCKS IN DEVICE

Confirm the check-box to enable the feature. If the check-box is not confirmed, the settings of other

related options are irrelevant.

Default setting: Disabled.

Version 0.3/11.2018 Page 42 of 80

Figure 21 : Max. allowed number of blocks in device options.

NAND Flash Memories Application Note

MAX. ALLOWED NUMBER OF BLOCKS IN DEVICE

Option Max. allowed blocks in device specifies the count of physical blocks in target device that are

allowed to be invalid.

Default setting: 2 % of total blocks count in device (or total blocks count in device – (minus) minimum valid blocks

count in device, if specified in datasheet this way).

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 43 of 80

NAND Flash Memories Application Note

BEHAVIOUR ON NEW INVALID BLOCK

Note: This feature is not supported on BeeProg+, BeeHive4+ and BeeHive8S programmers.

The feature specifies the programmer behaviour in case if new invalid block is developed during

operation.

IF NEW INVALID BLOCK IS DEVELOPED

Select from drop-down menu:

 abort operation immediately – if new invalid block will develop during operation, the

programmer will halt immediately with error;

 mark it invalid and continue operation – if new invalid block will develop during operation, it will

be marked invalid and operation will continue by applying invalid blocks management technique rules.

Default setting: mark it invalid and continue operation

Note: Technically, only program and erase operations are capable to invoke new invalid blocks formation as they

apply high voltage across the memory cells array. Read, verify and blank check operations may produce only

reversible errors that will disappear after erase. This is a matter of internal nand flash device operation, not of

programmer's action. Programmer may just react on events inside of target device.

Version 0.3/11.2018 Page 44 of 80

Figure 22 : Behaviour on new invalid block options.

NAND Flash Memories Application Note

RESERVED BLOCK AREA OPTIONS

Note: See chapter RBA (Reserved Block Area) for detailed information about related invalid blocks management

technique.

RBA TABLE – START BLOCK

Specifies the number of first physical block in device reserved for redirection table programming.

Default setting: last physical block in device – (minus) 15 blocks

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

RBA TABLE – NUMBER OF BLOCKS

Specifies the count of physical blocks in device reserved for redirection table programming.

Default setting: 15 blocks (we considered this a safe value)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 45 of 80

Figure 23 : Reserved blocks area options.

NAND Flash Memories Application Note

RBA TABLE SHOULD BE LOCATED

Specifies the areas layout in device:

 after Block Reservoir – redirection table should be located after the reservoir, i. e. the layout is

as follows: user data area, block reservoir, redirection table area;

 before Block Reservoir – redirection table should be placed before the reservoir, i. e. the layout

is as follows: user data area, redirection table area, block reservoir.

Default setting: after Block Reservoir

Version 0.3/11.2018 Page 46 of 80

NAND Flash Memories Application Note

INVALID BLOCKS INDICATION OPTIONS (SIMPLIFIED)

Note: This invalid blocks management technique is supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers.

Invalid blocks indication options allow to customize the way of invalid blocks marking in device.

Important note:

Please, keep in mind, that initial invalid blocks often cannot be reprogrammed, so this is only an alternative way. In

consequence, there may exist two kinds of invalid blocks in programmed device – one using manufacturer original

marking specified in target device datasheet (initial invalid blocks), and other using the marking specified here

(acquired invalid blocks).

Also please, keep in mind, that invalid block is invalid because it failed on program or erase operation. It might be

not possible to write required mark due to that failure.

INVALID BLOCK INDICATION BYTE VALUE

Specifies the value of BI byte used by programmer for marking invalid blocks developed during program

and/or erase operations:

 0x00 (0x0000 for x16 devices) – default value used by our programmers (datasheets typically

specify a non-FF value)

 0xF0 (0xF0F0 for x16 devices) – the value used in SmartMedia for acquired invalid blocks

marking

Default setting: 0x00 (0x0000 for x16 devices)

Version 0.3/11.2018 Page 47 of 80

Figure 24 : Invalid block indication options (simplified version)

NAND Flash Memories Application Note

INVALID BLOCKS INDICATION OPTIONS (EXTENDED)

Note: This feature is not supported on BeeProg+, BeeHive4+ and BeeHive8S programmers.

Invalid blocks indication options allow to customize the way of invalid blocks marking in device. This may

be very useful e. g. if an application uses data layout different from device physical page layout. For example,

application may work with a page of 512+16+512+16+512+16+512+16 bytes on target device with page of

2048+64 bytes. In such case, device original BI byte will belong to last data frame and some another byte may be

used for block validity marking (e. g. byte with page offset 517).

Before the operation start, target device may be scanned for invalid blocks in two ways:

 before program and blank test operation: manufacturer original indication scheme is expected;

 before read, verify and erase: customized indication scheme is expected.

However, the real scheme in device should be indicated using Target device uses option in Device

Operation options window.

On programming:

 initial invalid blocks are left as they are (they might be not rewritable nevertheless);

 acquired initial invalid blocks (if any) are marked using preset scheme;

 valid blocks are marked automatically by user data content or by programmer (if User data with IB

info forced is used).

On erasing blank device:

Version 0.3/11.2018 Page 48 of 80

Figure 25 : Invalid blocks indication options (extended version).

NAND Flash Memories Application Note

 initial invalid blocks are left as they are (they might be not rewritable nevertheless);

 acquired initial invalid blocks (if any) are marked using preset scheme.

On erasing programmed device:

 programmer will try to rewrite invalid blocks to some generally recognisable format, i. e. it will fill

all locations in invalid block to 0x00.

Important note:

Please, keep in mind, that initial invalid blocks often cannot be reprogrammed, so this is only an alternative way. In

consequence, there may exist two kinds of invalid blocks in programmed device – one using manufacturer original

marking specified in target device datasheet (initial invalid blocks), and other using the marking specified here

(acquired invalid blocks).

Also please, keep in mind, that invalid block is invalid because it failed on program or erase operation. It might be

not possible to write required mark due to that failure.

USE CUSTOMIZED INVALID BLOCKS INDICATION SCHEME

Confirm the check-box to enable customized invalid blocks indication scheme usage. If enabled, please,

bear in mind also target device state specification in Device Operation options window <Alt+O> menu, see

Target device uses.

Default setting: disabled

Version 0.3/11.2018 Page 49 of 80

NAND Flash Memories Application Note

ALTERNATIVE BLOCK VALIDITY INDICATION BYTE VALUE FOR INVALID
BLOCK

Specifies the value of BI byte (BI word for x16 devices) used by programmer for marking invalid blocks

developed during program and/or erase operations.

Default setting: 0x00 (0x0000 for x16 devices)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

ALTERNATIVE BLOCK VALIDITY INDICATION BYTE VALUE FOR GOOD
BLOCK

Specifies the value of BI byte (BI word for x16 devices) used by programmer for marking valid blocks. BI

byte will be rewritten during programming:

 automatically by programmer, if User data with IB info forced spare area usage mode is in use;

 by user data, if User data spare area usage mode is in use.

Default setting: 0xFF (0xFFFF for x16 devices)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

BLOCK VALIDITY INDICATION BYTE OFFSET ON A PAGE

Specifies BI byte (BI word for x16 devices) offset on a page, in a term of bytes (words for x16 devices),

counting from page start = offset 0.

Default setting: first spare area byte (word for x16 devices)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 50 of 80

NAND Flash Memories Application Note

PAGES FOR BLOCK VALIDITY INDICATION

Specifies one or two pages in a block used for BI byte (BI word for x16 devices) recognition.

Default setting: datasheet default (device dependent)

Note: Only decimal numbers are accepted for this setting. Maximum two pages may be specified.

FILL INVALID BLOCK WITH PREDEFINED VALUE

Confirm the check-box to enable filling all positions in invalid blocks by predefined value (see Invalid block

filling value below).

Default setting: disabled

Note: If both, Fill invalid block with predefined value and Use customized invalid blocks indication scheme are

enabled, invalid block will be filled with predefined value on programming, and customized scheme will be used for

invalid blocks recognition before operation start (depending on Target device uses setting).

INVALID BLOCK FILLING VALUE

Specifies the value used for filling invalid blocks.

Default setting: 0x00 (0x0000 for x16 devices)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 51 of 80

NAND Flash Memories Application Note

TOLERANT VERIFICATION OPTIONS

Tolerant verification is intended as a substitution of unknown ECC algorithm.

In practice, end-appliance may use any ECC algorithm that meets requirement prescribed by target

device manufacturer. Bit flip-flops during read will be detected and recovered by this algorithm.

On the other side, the programmer need not necessarily be aware of used ECC algorithm. User may

prepare data image including correct ECC sums in spare area and write it into target device using User data mode.

In such a case, it is possible to simulate ECC algorithm behaviour by enabling Tolerant verify feature. The

programmer will connive at as many bit errors in a frame as used ECC algorithm is capable to recover.

On programming and read operations, the feature has no effect on programmer behaviour.

On verify and blank check operation, the programmer will tolerate preset count of bit errors in a frame of

specified size. If the condition is violated, verify error (or blank check error, respectively) is generated.

USE TOLERANT VERIFY FEATURE

Confirm the check-box to enable tolerant verification.

Default setting: enabled

Version 0.3/11.2018 Page 52 of 80

Figure 26 : Tolerant verify options.

NAND Flash Memories Application Note

ECC FRAME SIZE (BYTES)

Specifies the frame size in bytes, as is used by ECC algorithm. Frame size should be specified in terms

of bytes for both x8 and x16 devices.

Default setting: datasheet default (device dependent)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

ACCEPTABLE NUMBER OF ERRORS

Specifies the count of bit-errors in a frame that ECC algorithm is capable to recover.

Default setting: datasheet default (device dependent)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 53 of 80

NAND Flash Memories Application Note

BLOCK PROTECTION SETTINGS

Note: The feature availability is device dependent.

Multichip NAND + RAM devices from Samsung based on 512 Mbit C-Die or 1 Gbit (small block) A-Die

NAND offer Block protection feature. The feature allows program and/or erase protection on first 200 blocks in

device.

LIST OF BLOCKS TO SET PROGRAM PROTECTION FOR

Specifies the blocks that should be protected from further programming. The protection can be disabled

by block erase.

Default setting: none

Note: See missing chapter for detailed info on how to enter list of blocks.

LIST OF BLOCKS TO SET ERASE PROTECTION FOR

Specifies the blocks that should be protected from further erasing. The protection is permanent.

Default setting: none

Note: See missing chapter for detailed info on how to enter list of blocks.

Version 0.3/11.2018 Page 54 of 80

Figure 27 : Block protection settings.

NAND Flash Memories Application Note

ONE TIME PROTECT AREA

Note: The feature availability is device dependent.

S30MS-R device family from Spansion offers a special kind of block – One Time Protect block. The block

consists of 8 pages that can be protected from further re-programming. The protection can be set on per-page

basis and is permanent. In addition, the block can be set in overlayed mode, thus replacing regular block #0000.

PROCESS ONE TIME PROTECT AREA

Confirm the check-box to enable One Time Protect block processing.

Default setting: disabled

LIST OF PAGES THAT SHOULD BE PROTECTED

Specifies the pages that should be protected from further programming. The protection is permanent.

Default setting: none

Note: See missing chapter for detailed info on how to enter list of blocks.

Version 0.3/11.2018 Page 55 of 80

Figure 28 : One Time Protect area settings.

NAND Flash Memories Application Note

ONE TIME PROTECT AREA DEFAULT MODE

Specifies One Time Protect block mode after device initialization:

 Overlayed – One Time Protect block is read in place of the first block in device;

 Removed – block #0000 is read in place of the first block in device.

Default setting: Removed.

Note: In default removed mode, One Time Protect block must be temporarily set to overlayed mode and then it can

be processed as if it had been block #0000.

Version 0.3/11.2018 Page 56 of 80

NAND Flash Memories Application Note

LINUX MTD COMPATIBLE OPTIONS

Note: Related invalid blocks management technique is not supported on BeeProg+, BeeHive4+ and BeeHive8S

programmers. In addition, target device can not require ECC with more than 1 bit error correction in 256 byte frame

(only Hamming's ECC algorithm is supported).

These options allow BBT customization. If there is any symbol name in capitals used in parenthesis (e. g.

NAND_USE_FLASH_BBT), it corresponds with the same symbol defined in MTD driver.

Version 0.3/11.2018 Page 57 of 80

Figure 29 : Linux MTD compatible options.

NAND Flash Memories Application Note

WRITE BBT TO DEVICE

Enables/disables BBT write. Confirm the check-box to enable BBT storage in device.

Default setting: enabled

Note: There are always two BBT copies used (BBT and Mirror BBT), as is specified in MTD driver. If it is not

possible to write both copies (e. g. due to too many invalid blocks in BBT area), operation is halted with error.

BBT SHOULD BE PLACED

Specifies, whether BBT should be placed by programmer or by user:

 at specified page – programmer will write BBT into exactly specified pages;

 automatically – programmer will try to place BBT into suitable block within specified area

automatically.

Default setting: automatically

BBT SHOULD BE PLACED STARTING FROM

Specifies BBT area location in BBT auto-placement mode:

 device start – BBT should be placed in first device blocks;

 device end – BBT should be placed in last device blocks.

Default setting: device end

Version 0.3/11.2018 Page 58 of 80

NAND Flash Memories Application Note

NUMBER OF BLOCKS RESERVED FOR BBT

Specifies the size of BBT area in BBT auto-placement mode in terms of device physical blocks.

Default setting: 4 (MTD driver default value)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Example: For device with 1024 blocks and default settings (BBT at device end, 4 blocks) last 4 blocks in device will

be reserved for BBT storage, i. e. blocks #1020, #1021, #1022 and #1023.

PAGE NUMBERS WHERE BBT SHOULD BE PLACED

Specifies the page (or list of pages for multi target devices) where BBT (original version) should be stored

in manual-placement mode. Enter page ordinal number here, counting from page 0.

Default setting: first page of last target block

Note: See missing chapter for detailed info on how to enter list of blocks.

PAGE NUMBERS WHERE MIRROR BBT SHOULD BE PLACED

Specifies the page (or list of pages for multi target devices) where Mirror BBT (a copy) should be stored in

manual-placement mode. Enter page ordinal number here, counting from page 0.

Default setting: first page in last but one target block

Note: See missing chapter for detailed info on how to enter list of blocks.

Version 0.3/11.2018 Page 59 of 80

NAND Flash Memories Application Note

BBT SHOULD BE STORED

Specifies device area covered by single BBT:

 per device – one common BBT should be used for all chips in device;

 per chip – one BBT should be used for each chip in device.

Default setting: for single chip devices: per device (irrelevant); for multi chip devices: per chip

STORE BBT VERSION COUNTER

Enables/disables version counter storage. Confirm the check-box to enable version numbering.

Default setting: 0

Note: Version counter is incremented by one on each BBT update. In case of power failure during BBT update

process, one table copy might be not actualized. On next system boot, BBT or Mirror BBT will be used (if both can

be read successfully) based of higher version counter value. This way, the most actual system state will be

preserved.

BBT VERSION COUNTER VALUE

Specifies initial BBT version counter value.

Default setting: 0 (MTD driver default value)

Note: Decimal (e.g. 123) and hexadecimal (e.g. 0x7B) forms are both accepted for this option.

Version 0.3/11.2018 Page 60 of 80

NAND Flash Memories Application Note

NUMBER OF BITS USED PER BLOCK IN BBT ON DEVICE

Specifies the count of bits used to store the status of single block in BBT.

 1 bit – 0b = invalid block, 1b = good block

 2 bits – 00b = invalid block, 01b = reserved block, 10b = worn-out block, 11b = good block

 4 bits – 0000b = invalid block, 0011b = reserved block, 1100b = worn-out block, 1111b = good

block

 8 bits – 00000000b = invalid block, 00001111b = reserved block, 11110000 = worn-out block,

11111111b = good block

Default setting: 2 bits

VALUE USED FOR RESERVED BLOCKS MARKING

Typically, reserved blocks are for system internal use only and are highlighted in RAM version of BBT, but

not in its copy stored in flash device. They appear as normal good blocks in device based BBT. This setting

specifies the value used for reserved blocks.

Default setting: 0x00 (reserved block = good block)

USE SMART MEDIA BYTES ORDER FOR ECC

Confirm the check-box to enable Smart Media ECC control sums formatting. See chapter ECC –

Hamming (2 x 256 byte frame) variant 1 and 2 for more detailed information.

Default setting: disabled

Version 0.3/11.2018 Page 61 of 80

NAND Flash Memories Application Note

APPLY MTD SPECIFIC ECC ON PARTITION DATA

Enables/disables on-the-fly ECC application during the action. Though spare area is build automatically if

enabled, respective (blank) data are still expected in buffer. See chapter ECC – Hamming (2 x 256 byte frame)

variant 1 and 2 for more detailed information.

Default setting: disabled

Version 0.3/11.2018 Page 62 of 80

NAND Flash Memories Application Note

OTP AREA OPTIONS

Note: The feature availability is device dependent. Moreover, it is supported for selected devices only.

INCLUDE OTP AREA INTO OPERATIONS

Enables/disables OTP area processing. Confirm the check-box to enable the feature.

Default setting: disabled

PROTECT OTP AREA AFTER PROGRAMMING

Enables/disables programmed OTP area protection from further rewrite (OTP area cannot be erased, but

e. g. 0xFE value still can be rewritten to 0xFC, then to 0xF8 and so on...). Confirm the check-box to enable the

protection.

Default setting: disabled

Version 0.3/11.2018 Page 63 of 80

Figure 30 : OTP Area options.

NAND Flash Memories Application Note

DEVICE OPERATION OPTIONS WINDOW

Version 0.3/11.2018 Page 64 of 80

NAND Flash Memories Application Note

INSERTION TEST AND/OR ID CHECK

INSERTION TEST

Enables/disables signal continuity check.

Default setting: enabled

Note: Please, be aware of static character of this test. It is capable to detect device misplacing and/or severe

integrity fault between programmer's ZIF and device. But it might not detect soft polluted and/or oxidized contact as

to which may fully manifest only at high-speed operation. Therefore it is a rule of thumb to check and clean all

contacts on adapter(s) and device in case of verify after programming problems. The other important rule is to not

overuse programming adapters – respect, please, stated lifetime of adapter's ZIF socket.

DEVICE ID CHECK ERROR TERMINATES THE OPERATION

Enables/disable operation halting on ID check error.

Default setting: enabled

Note: ID check error may point to error in device selection and/or insertion. Ignoring it may lead to inserted device

and/or programmer damage. Disable this option only if you are sure of what you are doing.

Version 0.3/11.2018 Page 65 of 80

Figure 31 : Insertion test and ID check options.

NAND Flash Memories Application Note

COMMAND EXECUTION

ERASE BEFORE PROGRAMMING

Enables/disables device erasing before programming.

Default setting: disabled

BLANK CHECK BEFORE PROGRAMMING

Enables/disables device erase check before programming.

Default setting: disable

Note: NAND flash devices incorporate internal controller that manages program and erase operations. The

operation state is indicated in STATUS register. If block erase command is finished with PASS status, it means, that

all memory cells in respective block are in erased state, i. e. blank. Therefore, Blank check before programming

operation is skipped if it is enabled together with Erase before programming operation. See also chapter Two

factors that programmer relies on.

Version 0.3/11.2018 Page 66 of 80

Figure 32 : Command execution options.

NAND Flash Memories Application Note

VERIFY AFTER READING

Enables/disables read data verification.

Default setting: enabled

VERIFY AFTER PROGRAMMING

Enables/disables verification of programmed data against data in buffer.

Default setting: enabled

Note: If programmer detects a blank page, it will skip this page during both, programming and verify after

programming operations. But all specified pages are checked during Verify operation.

Version 0.3/11.2018 Page 67 of 80

NAND Flash Memories Application Note

SPECIAL DEVICE OPERATION OPTIONS

Note: This feature is not supported on BeeProg+, BeeHive4+ and BeeHive8S programmers.

TARGET DEVICE USES

Specifies the way of invalid blocks indication used in target device.

 manufacturer original invalid blocks indication scheme – data in device respect BI bytes as

they are specified in device datasheet

 customized invalid blocks indication scheme – data in device use a scheme specified by

customer, see also chapter Invalid blocks indication options (extended).

Version 0.3/11.2018 Page 68 of 80

Figure 33 : Special device operation options.

NAND Flash Memories Application Note

SPECIAL NAND FLASH COMMANDS

Note: Following commands can be accessed through menu Device. Commands are not supported on BeeProg+,

BeeHive4+ and BeeHive8S programmers.

Version 0.3/11.2018 Page 69 of 80

Figure 34 : Menu device.

NAND Flash Memories Application Note

READ ONFI PARAMETER PAGE

Note: The feature availability is device dependent.

ONFI standards (see http://www.onfi.org for more information about Open Nand Flash Interface working

group) involve a special memory page containing detailed data about device identification, memory array

arrangement, timing parameters, special features supported, etc. This page can be read using Read ONFI

parameter page command. After parameter page is successfully read, it is decoded and outputted in

comprehensible form to a text file stored on your desktop.

ONFI parameter page report example:

ELNEC ONFI Decoder
2018.Nov.19 13:03:39

ID read from device from address 0x00:
 2C 44 44 4B A9 00 00 00
ID read from device from address 0x20:
 4F 4E 46 49

Revision information and features block
 Parameter page signature: 'ONFI'
 Revision number: 0x003E
 ONFI version 1.0
 ONFI version 2.0
 ONFI version 2.1
 ONFI version 2.2
 ONFI version 2.3
 Features supported: 0x01D8
 supports multi-plane program and erase operations
 supports odd to even page Copyback
 supports multi-plane read operations
 supports extended parameter page
 supports program page register clear enhancement
 Optional commands supported: 0x03FF
 supports Page Cache Program command
 supports Read Cache commands
 supports Get Features and Set Features
 supports Read Status Enhanced
 supports Copyback
 supports Read Unique ID
 supports Change Read Column Enhanced
 supports Change Row Address
 supports Small Data Move
 supports Reset LUN
 Extended parameter page length: 0x0003
 Number of parameter pages: 0x1D

Manufacturer information block
 Device manufacturer: 'MICRON '
 Device model: 'MT29F32G08CBADAWP '
 JEDEC manufacturer ID: 0x2C
 Date code: Y:0 W:0

Memory organization block
 Number of data bytes per page: 8192
 Number of spare bytes per page: 744
 Obsolete - Number of data bytes per partial page: 0
 Obsolete - Number of spare bytes per partial page: 0
 Number of pages per block: 256

Version 0.3/11.2018 Page 70 of 80

http://www.onfi.org/

NAND Flash Memories Application Note

 Number of blocks per logical unit (LUN): 2128
 Number of logical units (LUNs): 1
 Number of address cycles: 0x23
 Row address cycles: 3
 Column address cycles: 2
 Number of bits per cell: 2
 Bad blocks maximum per LUN: 74
 Block endurance: 3 x 10^3
 Guaranteed valid blocks at beginning of target: 1
 Block endurance for guaranteed valid blocks: 0
 Number of programs per page: 1
 Obsolete - Partial programming attributes: 0
 Number of bits ECC correctability: 255
 Number of plane address bits: 1
 Multi-plane operation attributes: 0x1E
 no block address restrictions
 program cache supported
 Address restrictions for cache operations
 read cache supported
 EZ NAND support: 0x00
 none

Electrical parameters block
 I/O pin capacitance, maximum: 7
 Asynchronous timing mode support: 0x003F
 supports timing mode 0, shall be 1
 supports timing mode 1
 supports timing mode 2
 supports timing mode 3
 supports timing mode 4
 supports timing mode 5
 Obsolete - Asynchronous program cache timing mode support: 0
 tPROG Maximum page program time (us): 2500
 tBERS Maximum block erase time (us): 12000
 tR Maximum page read time (us): 90
 tCCS Minimum change column setup time (ns): 200
 Source synchronous timing mode support: 0x0000
 none
 Source synchronous features: 0x00
 none
 CLK input pin capacitance, typical: 0
 I/O pin capacitance, typical: 53
 Input pin capacitance, typical: 42
 Input pin capacitance, maximum: 10
 Driver strength support: 0x07
 supports driver strength settings
 supports 25 Ohm drive strength
 supports 18 Ohm drive strength
 tR Maximum multi-plane page read time (us): 90
 tADL Program page register clear enhancement tADL value (ns): 70
 tR Typical page read time for EZ NAND (us): 0

Vendor block
 Vendor specific Revision number: 0x0001
 Vendor specific (in Hex form):
 01 00 00 00 04 10 01 81
 04 02 02 01 1E 90 08 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 02

Integrity CRC: 0x1D55

Parameter page dump (in Hex form):
 4F 4E 46 49 3E 00 D8 01 FF 03 00 00 03 00 1D 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 4D 49 43 52 4F 4E 20 20 20 20 20 20 4D 54 32 39
 46 33 32 47 30 38 43 42 41 44 41 57 50 20 20 20
 2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 20 00 00 E8 02 00 00 00 00 00 00 00 01 00 00

Version 0.3/11.2018 Page 71 of 80

NAND Flash Memories Application Note

 50 08 00 00 01 23 02 4A 00 03 03 01 00 00 01 00
 FF 01 1E 00 00 00 00 00 00 00 00 00 00 00 00 00
 07 3F 00 00 00 C4 09 E0 2E 5A 00 C8 00 00 00 00
 00 00 35 00 2A 00 0A 07 5A 00 46 00 00 00 00 00
 00 00 00 00 01 00 01 00 00 00 04 10 01 81 04 02
 02 01 1E 90 08 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 02 55 1D

Version 0.3/11.2018 Page 72 of 80

NAND Flash Memories Application Note

READ JEDEC PARAMETER PAGE

Note: The feature availability is device dependent.

JEDEC standard (see https://www.jedec.org for more information) are very similar to ONFI standards. It

also specifies a special memory page containing detailed data about device identification, memory array

arrangement, timing parameters, special features supported, etc. This page can be read using Read JEDEC

parameter page command. After parameter page is successfully read, it is decoded and outputted in

comprehensible form to a text file stored on your desktop.

JEDEC parameter page report example:

ELNEC JESD Decoder
2018.Nov.19 13:09:21

ID read from device from address 0x00:
 2C 44 44 4B A9 00 00 00
ID read from device from address 0x40:
 4A 45 44 45 43 01 00 00

Revision information and features block
 Parameter page signature: 'JESD'
 Revision number: 0x0003
 Reserved (0)
 supports vendor specific parameter page
 Features supported: 0x0000
 none
 Optional commands supported: 0x000000
 none
 Secondary commands supported: 0x0000
 Number of Parameter Pages: 0

Manufacturer information block
 Device manufacturer: 'MICRON '
 Device model: 'MT29F32G08CBADAWP '
 JEDEC manufacturer ID: 0x2C0000000000

Memory organization block
 Number of data bytes per page: 8192
 Number of spare bytes per page: 744
 Number of data bytes per partial page (MICRON specific): 1024
 Number of spare bytes per partial page (MICRON specific): 93
 Number of pages per block: 256
 Number of blocks per logical unit (LUN): 2128
 Number of logical units (LUNs): 1
 Number of address cycles: 0x23
 Row address cycles: 3
 Column address cycles: 2
 Number of bits per cell: 2
 Number of programs per page: 1
 Multi-plane addressing: 0x01
 Number of plane address bits: 1
 Multi-plane operation attributes: 0x07
 No multi-plane block address restrictions
 program cache supported
 read cache supported

Electrical parameters block
 Asynchronous SDR speed grade: 0x003F
 supports 100 ns speed grade (10 MHz)

Version 0.3/11.2018 Page 73 of 80

https://www.jedec.org/document_search?search_api_views_fulltext=jesd230

NAND Flash Memories Application Note

 supports 50 ns speed grade (20 MHz)
 supports 35 ns speed grade (~28 MHz)
 supports 30 ns speed grade (~33 MHz)
 supports 25 ns speed grade (40 MHz)
 supports 20 ns speed grade (50 MHz)
 Toggle Mode DDR and NV-DDR2 speed grade: 0x0000
 none
 Synchronous DDR speed grade: 0x0000
 none
 Asynchronous SDR features: 0x00
 Toggle-mode DDR features: 0x00
 Synchronous DDR features: 0x0000
 none
 tPROG Maximum page program time (us): 2500
 tBERS Maximum block erase time (us): 12000
 tR Maximum page read time (us): 90
 tR Maximum multi-plane page read time (us): 90
 tCCS Minimum change column setup time (ns): 200
 I/O pin capacitance, typical: 53
 Input pin capacitance, typical: 42
 CK pin capacitance, typical: 0
 Driver strength support: 0x07
 supports 35ohm/50ohm driver strength
 supports 25 Ohm drive strength
 supports 18 Ohm drive strength
 tADL Program page register clear enhancement tADL value (ns): 0

ECC and endurance block
 Guaranteed valid blocks at beginning of target: 1
 Block endurance for guaranteed valid blocks: 0
 ECC and endurance information block 0
 Number of bits ECC correctability: 40
 Codeword size: 10
 Bad blocks maximum per LUN: 74
 Block endurance: 771
 Reserved (0): 0
 ECC and endurance information block 1
 Number of bits ECC correctability: 0
 Codeword size: 0
 Bad blocks maximum per LUN: 0
 Block endurance: 0
 Reserved (0): 0
 ECC and endurance information block 2
 Number of bits ECC correctability: 0
 Codeword size: 0
 Bad blocks maximum per LUN: 0
 Block endurance: 0
 Reserved (0): 0
 ECC and endurance information block 3
 Number of bits ECC correctability: 0
 Codeword size: 0
 Bad blocks maximum per LUN: 0
 Block endurance: 0
 Reserved (0): 0

Vendor specific block
 Vendor specific Revision number: 0x0001
 Vendor specific (in Hex form):
 08 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

Integrity CRC: 0xD0AA

Parameter page dump (in Hex form):
 4A 45 53 44 03 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 4D 49 43 52 4F 4E 20 20 20 20 20 20 4D 54 32 39

Version 0.3/11.2018 Page 74 of 80

NAND Flash Memories Application Note

 46 33 32 47 30 38 43 42 41 44 41 57 50 20 20 20
 2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 20 00 00 E8 02 00 04 00 00 5D 00 00 01 00 00
 50 08 00 00 01 23 02 01 01 07 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 3F 00 00 00 00 00 00 00 00 C4 09 E0 2E 5A 00 5A
 00 C8 00 35 00 2A 00 00 00 07 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 01 00 00 28 0A 4A 00 03 03 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Version 0.3/11.2018 Page 75 of 80

NAND Flash Memories Application Note

CHECK INVALID BLOCKS

This special nand flash command screens all blocks in device for their validity status. Collected statuses

are outputted to a file stored on your desktop, together with basic device quality statistics.

Block numbers are displayed with regard to device as a whole as well as with regard to respective chip.

Similarly, overall and chip statistics are displayed.

Check invalid blocks report example:

Check invalid blocks - report:

>> 28.11.2013, 17:03:29
Checking invalid blocks: Toshiba TH58NVG5H0ETA20 [TSOP48].

Device contains 2 chips with 8192 blocks each.

Invalid blocks listing:
Total block no. | Chip no. | Block no.
----------------+----------+----------
 5368 | 0 | 5368
 9641 | 1 | 1449
 10133 | 1 | 1941
----------------+----------+----------

Invalid blocks count:
Chip no. 0: 1
Chip no. 1: 2

Device : 3

Invalid blocks percentage:
Chip no. 0: 0,01 % (of chip blocks count)
Chip no. 1: 0,02 % (of chip blocks count)
--
Device : 0,02 % (of device blocks count)

Invalid blocks distribution ratio:
Chip no. 0: 33,33 % (of total invalid blocks count)
Chip no. 1: 66,67 % (of total invalid blocks count)

Version 0.3/11.2018 Page 76 of 80

NAND Flash Memories Application Note

GLOSSARY

Acquired invalid block

An invalid block developed during a lifetime.

Address

Consists of row address and column address. The row address identifies the page, block, and LUN to be accessed.

The column address identifies the byte or word within a page to access.

BBT (Bad Blocks Table)

A table containing the list of invalid blocks in particular device or chip. Used by certain invalid blocks management

methods.

BI byte/word

A column used for invalid blocks marking.

Bit error

A single bit error caused primarily by defective material. May be of temporary nature (disappear after erase) or of

permanent nature.

Block

Consists of multiple pages and is the smallest addressable unit for erase operations.

Column

The byte (for x8 devices) or word (for x16 devices) location within the page register.

Data area

A part of a page used for storage of payload data.

ECC (Error-Correcting Code)

A mathematical algorithm used for temporary bit errors detection and correction. Also referred as EDC (Error

Detection and Correction).

Extra large page

A page with data area size of 8192 bytes / 4096 words.

Initial invalid block

An invalid block detected already on manufacturing line.

Invalid block

A block that contains one or more damaged memory cells (permanent bit errors). Such block may not be used for

data storage. Also referred as bad block or damaged block. An opposite is referred as valid or good block.

Version 0.3/11.2018 Page 77 of 80

NAND Flash Memories Application Note

Invalid block management

A set of algorithms used for treatment of invalid blocks.

Large block

A block consisting of large pages. Generally, this term is obviously used for blocks containing pages larger than

small page.

Large page

A page with data area size of 2048 bytes / 1024 words.

Linux MTD

Linux MTD is a set of drivers used in Linux-based operating systems for treatment of flash-based memory devices.

(MTD stands for Memory Technology Device.)

LUN (Logical Unit Number)

The minimum unit that can independently execute commands. There may be one or more LUNs per NAND chip.

MLC (Multi Level Cell)

A nand flash technology that uses memory cells capable to carry more than 1 bit of information. At this time, MLC is

typically used for 2 bits-per-cell technologies rather than for its general meaning. 2 bits-per-cell cell type works with

four voltage levels (00, 01, 10, 11).

MCP (Multi Chip Package)

A device containing several memory units, typically of various types (e.g. RAM, NOR, NAND, eMMC,...).

NAND chip

A set of LUNs that share one nCE signal within NAND package.

NAND device

Packaged NAND unit. A device consists of one or more NAND chips.

Page

The smallest addressable unit for read and program operations.

Page register

For read operation – this register is used for reading data transferred from flash array. For program operation –

data is placed here before transferring to flash array.

Redirection table

A table containing the list of pairs of invalid blocks and valid blocks used for their substitution. Also referred as

substitution table.

Reserve block method

A method of invalid blocks management. If invalid block is found, a next valid block is taken from blocks reservoir

Version 0.3/11.2018 Page 78 of 80

NAND Flash Memories Application Note

and used instead.

Row

Refers to block and page to be accessed.

Skip block method

A method of invalid blocks management. If invalid block is found, it is skipped and next valid block is used instead.

SLC (Single Level Cell)

A nand flash technology that uses memory cells capable to carry 1 bit of information. This cell type works with two

voltage levels (0 and 1).

Small block

A block consisting of small pages.

Small page

A page with data area size of 512 bytes / 256 words.

Spare area

A part of a page, typically used for storage of meta-data (ECC, file system information...). Also referred as OOB

(Out-Of-Boundary) area.

TLC (Triple level cell)

A nand flash technology that uses memory cells capable to carry 3 bits of information in single cell. This cell type

works with eight voltage levels (000, 001, …, 111).

Very large page

A page with data area size of 4096 bytes / 2048 words.

Wear levelling

A set of algorithms used for ensuring balanced blocks usage.

Version 0.3/11.2018 Page 79 of 80

NAND Flash Memories Application Note

HISTORY

Rev. Date Comment

0.1 2013, December 04 - initial draft

0.2 2017, October 16 - MBN file size updated

0.3 2018, November 19 - Discard invalid block(s) data added
- Read JEDEC parameter page added
- features availability information refined
- small text corrections

Version 0.3/11.2018 Page 80 of 80

	Brief comments on invalid blocks
	Brief comments on bit errors
	Two factors that programmer relies on
	Data organization in pg4uw control software buffer
	Loading data into pg4uw control software buffer
	Loading multiple data images

	Access Method window
	Invalid blocks management
	Treat all blocks
	Skip IB
	Skip IB with map in 0th block
	Skip IB with excess abandon
	RBA (Reserved Block Area)
	Check IB without access
	Check IB with Skip IB
	Discard Invalid block(s) data
	Multiple partitions with Skip IB
	Partition definition file
	Qualcomm Multiply partition format (*.mbn)
	Procedure for two input files
	Procedure for single input file

	Comma separated values (*.csv)
	Group define format (*.def)
	Loading partition table definition file

	Access Method window options validity in partitioning mode
	Safe working procedure

	Linux MTD compatible

	Spare area usage
	Do not use
	User data
	User data with IB info forced
	ECC – Hamming (by Samsung)
	ECC – Hamming (2 x 256 byte frame) variant 1 and 2

	Device internal ECC controller
	Enable device internal ECC controller

	User Area
	User Area – Start Block
	User Area – Number of Blocks
	User Area – Last Block
	User Area – Max. Allowed Number of Invalid Blocks

	Required valid blocks area
	Check required valid blocks area
	Required valid blocks area – start block
	Required valid blocks area – number of blocks

	Max. allowed number of invalid blocks in device
	Check Max. allowed number of blocks in device
	Max. allowed number of blocks in device

	Behaviour on new invalid block
	If new invalid block is developed

	Reserved block area options
	RBA Table – Start Block
	RBA Table – Number of Blocks
	RBA Table should be located

	Invalid blocks indication options (simplified)
	Invalid Block Indication Byte Value

	Invalid blocks indication options (extended)
	Use customized invalid blocks indication scheme
	Alternative block validity indication byte value for invalid block
	Alternative block validity indication byte value for good block
	Block validity indication byte offset on a page
	Pages for block validity indication
	Fill invalid block with predefined value
	Invalid block filling value

	Tolerant verification options
	Use Tolerant verify feature
	ECC frame size (bytes)
	Acceptable number of errors

	Block protection settings
	List of blocks to set Program protection for
	List of Blocks to set Erase protection for

	One Time Protect area
	Process One Time Protect area
	List of pages that should be protected
	One Time ProteCt area default mode

	Linux MTD compatible options
	Write BBT to device
	BBT should be placed
	BBT should be placed starting from
	Number of blocks reserved for BBT
	PAGE numbers where BBT should be placed
	Page numbers where Mirror BBT should be placed
	BBT should be stored
	Store BBT version counter
	BBT version counter Value
	Number of bits used per block in BBT on device
	Value used for RESERVED blocks marking
	Use Smart Media bytes order for ECC
	Apply MTD specific ECC on partition data

	OTP area options
	Include OTP area into operations
	Protect OTP Area after programming

	Device Operation options window
	Insertion test and/or ID check
	Insertion test
	Device ID check error terminates the operation

	Command execution
	Erase before programming
	Blank check before programming
	Verify after reading
	Verify after programming

	Special device operation options
	Target device uses

	Special NAND flash commands
	Read ONFI parameter page
	Read JEDEC parameter page
	Check invalid blocks

	Glossary
	History

